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Abstract
Advances in generative arti�cial intelligence (GAI) show great potential for improving education. Yet little is known about
how this new technology should be used and how effective it can be. Here we report a randomized, controlled study
measuring college students’ learning and their perceptions when content is presented through an AI-powered tutor
compared with an active learning class. The AI tutor was developed with the same pedagogical best practices as the
lectures. We �nd that students learn more than twice as much in less time when using an AI tutor, compared with the active
learning class. They also feel more engaged and more motivated. These �ndings offer empirical evidence for the e�cacy of
a widely accessible AI-powered pedagogy in signi�cantly enhancing learning outcomes, presenting a compelling case for its
broad adoption in learning environments.

*These authors contributed equally to this work.

Additionally, please note that Gregory Kestin is the corresponding author.

Summary
Generative Arti�cial Intelligence (GAI) is poised to revolutionize education1, offering personalized learning experiences
through AI tutors that adapt to individual learning paces and styles. Active learning pedagogies, demonstrated to
signi�cantly improve over passive lectures9, have become a mainstay in education. Despite the clear bene�ts of active
learning, our study reveals that AI tutoring not only complements but also enhances these methods by addressing their
limitations, offering a customized, scalable educational experience that's broadly accessible. Despite excitement
surrounding AI's potential in education, evidence of its effectiveness remains limited and concerns about its tendency to
generate inaccuracies persist5, raising questions about whether and how current AI technologies should be deployed in
learning environments. Our �ndings provide clarity; here we show that students learn more than twice as much in less time
with an AI tutor compared to an active learning classroom, while also being more engaged and motivated. This
demonstrates that AI tutors, when properly designed and implemented, can signi�cantly improve learning on multiple
fronts. Our study is empirical evidence that AI tutoring systems can be highly reliable and overcome long standing
challenges in education, making personalized world-class education globally accessible.

Introduction
With their human-like conversational style and knowledge drawn from extremely large data sets, Generative Arti�cial
Intelligence (GAI) chatbots have inspired visions of expert tutors available on demand through every smartphone 1 .
Recently, the President of the United States pledged to “shape AI's potential to transform education by creating resources to
support educators deploying A.I.-enabled educational tools, such as personalized tutoring in schools.”1 Despite this recent
excitement, previous studies show mixed results on the effectiveness of learning, even with the most advanced AI
models2,3. While these models can answer technical questions, their unguided use lets students complete assignments
without engaging in critical thinking. After all, AI chatbots are generally designed to be helpful, not to promote learning. They
are not trained to follow pedagogical best practices (e.g. facilitating active learning, managing cognitive load,4, and
promoting a growth mindset). Another well-known �aw with AI tutors is their uncanny con�dence when giving out an
incorrect answer or when marking a correct reply as incorrect,5. As reported here, a carefully designed AI tutoring system,
using the best current GAI technology and deployed appropriately, can not only overcome these challenges but also address
signi�cant known issues with pedagogy in an accessible way that can offer world-class education to any community or
learning environment with an internet connection.
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Although passive lectures are among the least effective modes of instruction, they remain in wide use in STEM (science,
technology, engineering, and mathematics) courses6,7,8. Passive lectures have several long-known issues: 1. they move too
quickly for some students and too slowly for others because the teacher controls the pace of instruction; 2. students do not
receive personalized feedback to their questions as they arise; and 3. they fail to maintain consistent student engagement.
Active learning pedagogies, such as peer instruction, small-group activities, or a �ipped classroom structure, have
demonstrated signi�cant improvements over passive lectures9,10,11,12,13. However, any approach that involves one teacher
working with many students will suffer, at least in part, from the same three problems that plague passive lectures.

Working one-on-one with an expert personal tutor is generally regarded as the most e�cient form of education14. A tutor
can guide the student while providing personalized feedback and answering questions as they arise. Expert tutors will adapt
their approach to a student's individual ability, pace, and speci�c needs. They offer a more focused and e�cient learning
experience, reducing the student’s cognitive load. In addition, personalized instruction can foster a growth mindset, which
has been shown to promote student persistence in the face of di�culties15, 16. While the advantages of personalized
instruction are clear, this model of education cannot scale to meet the needs of a large number of students17.

What if an AI tutor could mimic the learning experience one would get from an expert (human) tutor? It could address the
unique needs of each individual through timely feedback while adopting what we know from the science of how students
learn best. This is the focus of our work. Through content-rich prompt engineering, we developed an online tutor that uses
GAI and best practices from pedagogy and educational psychology to promote learning in undergraduate science
education. We conducted a randomized controlled experiment in a large undergraduate physics course (N = 194) at Harvard
University to measure the difference between 1) how much students learn and 2) students’ perceptions of the learning
experience when identical material is presented through an AI tutor compared with an active learning classroom.

Results
In this study, students were divided into two groups, each experiencing two lessons, each with distinct teaching
methodologies, in consecutive weeks. The �rst week, group 1 engaged with an AI-supported lesson at home while group 2
participated in an instructor-guided active learning lecture. The conditions were reversed the following week. To establish
baseline knowledge, students from both groups completed a pre-test prior to each lesson—focusing on surface tension in
the �rst week and �uid �ow in the second. Following the lessons, students completed post-tests to measure content
mastery and answered four questions aimed at gauging their learning experience, including engagement, enjoyment,
motivation, and growth mindset. Further details on the study design are provided in the supplemental information.

Learning gains: post-test scores
Learning gains were measured by comparing the post-test scores of the AI group and the active lecture group to the pre-
test scores of the two groups combined. Students in the AI group exhibited a higher median (M) post score (M = 4.5, N = 
142) compared to those in the active lecture group (M = 3.5, N = 174). The learning gains for students, relative to the pre-test
baseline (M = 2.75, N = 316), in the AI-tutored group were over double those for students in the active lecture group. We
conducted a two-sample rank-sum (Mann–Whitney) test to compare the distribution of post scores between the two
groups. The analysis revealed a statistically signi�cant difference (z = -5.6, p < 10− 8). Figure 1 shows mean aggregate
results (week 1 and 2 combined) of the learning gains for the group taught with the active lecture compared to the group
taught with the AI tutor.

Figure 1. A comparison of mean post-test performance between students taught with the active lecture and students taught
with the AI tutor. Dotted line represents students’ mean baseline knowledge before the lesson (i.e. the pre-test scores of
both groups). Error bars show one standard error of the mean.

Time on task



Page 4/14

During a 75-minute period, the in-class students spent 15 minutes taking the pre/post tests so we assumed 60 minutes
spent on learning. For students in the AI group, we tracked students’ use on the AI tutor platform to measure how long they
spent on the material, the distribution for which is shown in Fig. 2. 70% of students in the AI group spent less than 60
minutes on task, while 30% spent more than 60 minutes on task. The median time on task for students in the AI group was
49 minutes.

Figure 2. Total time students in the AI group spent interacting with the tutor. Dotted line denotes the length of the active
lecture (60 minutes).

Learning gains: linear regression model
We constructed a linear regression model (Table 1) to better understand how the type of instruction (active learning versus
AI tutor) contributed to students’ mastery of the subject matter as measured by their post-test scores. This model includes
the following sets of controls. First, we controlled for background measures of physics pro�ciency: speci�c content
knowledge (pre-test score), broader pro�ciency in the course material (midterm exam before the study), and prior
conceptual understanding of physics (Force Concept Inventory or FCI)18. We also controlled for students’ prior experience
with ChatGPT. Next, we controlled for factors inherent to the cross-over study design: the class topic (surface tension vs
�uids) and the version of the pre/post tests (A vs B; see supplemental information). Finally, we controlled for “time on task.”
Given that our experiment is a crossover design where each student receives both conditions, this model clusters at the
student level.

 
Table 1

Linear Regression Model.
Regression Parameter Standardized coe�cients

Class session (Active lecture = 0, AI = 1) 0.63***

Pre-test (z score) 0.18**

Midterm exam score (z-score) 0.09

FCI pre-test (z-score) 0.11

Prior AI Experience -0.15**

Class session topic (Fluids = 0, Surf. tension = 1) 0.01

Test version (A versus B) -0.04

Time on task 0.1

Constant 0.12

R2 0.21

RMSE 0.86

Table 1 shows that, controlling for all these factors, the students in the AI group performed substantially better on the post-
test compared with those in the active lecture group. We show this to be a highly signi�cant (p < 10− 8) result with a large
effect size. While the linear regression suggests an effect size of 0.63, this is an underestimation due to ceiling effect; a
quantile regression allows us to provide an estimate of the effect size that avoids ceiling effect in the post-test scores. Such
an analysis provides an effect size in the range of 0.73 to 1.3 standard deviations.
Notably, there was no correlation between the time spent on learning and students’ post-test scores, despite quite a wide
range of times measured for the AI group (Fig. 2). As discussed further below, students’ ability to pace themselves with the
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AI tutor is an advantage of personalized instruction compared with in-class learning.

AI Tutor: Students’ Perceptions of Learning
Figure 3 shows students’ average level of agreement with four statements about their perceptions of learning, broken down
between the two groups (active lecture vs AI tutor). Students rated their level of agreement on a 5-point Likert scale, with 1
representing “strongly disagree” and 5 representing “strongly agree.” With the �rst statement, “I felt engaged (while
interacting with the AI tutor) / (while in lecture),” the students in the AI group agreed more strongly (Mean = 4.1, SD = 0.98)
than those in the active lecture (Mean = 3.6, SD = 0.92), t(311) = -4.5, p < 0.0001. Likewise, with the second statement, “I felt
motivated when working on a di�cult question,” students in the AI group agreed more strongly (Mean = 3.4, SD = 1.0) than
those in the active lecture (Mean = 3.1, SD = 0.86), t(311) = -3.4, p < 0.001. Students’ average level of agreement with the
remaining two statements (“I enjoyed the class session today” and “I feel con�dent that, with enough effort, I could learn
di�cult physics concepts”) were not statistically signi�cantly different between the two groups. To summarize, Fig. 3 shows
that, on average, students in the AI group felt signi�cantly more engaged and more motivated during the AI class session
than the students in the active lecture group, and the degree to which both groups enjoyed the lesson and reported a growth
mindset was comparable.

Figure 3. Level of agreement to statements about perceptions of learning experiences, comparing students taught with an
active lecture and students taught with the AI tutor. Error bars show 1 standard error of the mean. Asterisks above the bars
denote P-values generated by dependent t-tests (***p < 0.001).

Discussion
We have found that when students interact with our AI tutor, at home, on their own, they learn more than twice as much as
when they engage with the same content during an actively taught science course, while spending less time on task. This
�nding underscores the transformative potential of AI tutors in authentic educational settings. In order to realize this
potential for improving STEM outcomes, student-AI interactions must be carefully designed to follow research-based best
practices.

The extensive pedagogical literature supports a set of best practices that foster students' learning, applicable to both
human instructors and digital learning platforms. Key practices include (i) facilitating active learning11,19, (ii) managing

cognitive load (4), (iii) promoting a growth mindset (15, 16), (iv) scaffolding content20, (v) ensuring accuracy of information
and feedback, (vi) delivering such feedback and information in a targeted and timely fashion21 and (vii) allowing for self-
pacing22. We aimed to design an AI system that conforms to these practices as well as current technology allows, thus
establishing model for future educational AI applications.

Designing Successful Student-AI Interactions
A subset of the best practices (i-iii) could be incorporated by careful engineering of the AI tutor’s system prompt. We
designed the AI tutor with a system prompt with guidelines (detailed in the Supplemental Information) to facilitate active
engagement, manage cognitive load, and promote a growth mindset. However, we found that a system prompt could not
reliably provide enough structure to scaffold problems with multiple parts (iv). For this reason, we designed our AI platform
to guide students sequentially through each part of each problem in the lesson, mirroring the approach taken by the
instructor during the active lecture (see Figure S1).

The occurrence of inaccurate “hallucinations” by the current generation of Large Language Models (LLMs) poses a
signi�cant challenge for their use in education23. Thus, we avoided relying solely on GPT-4 to generate solutions for these
activities. Given that LLMs proceed by next-token prediction, accuracy in complex math or science problems is enhanced
when the system generates, or is provided with, detailed step-by-step solutions24. Therefore, we enriched our prompts with
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comprehensive, step-by-step answers, guiding the AI tutor to deliver accurate and high-quality explanations (v) to students.
As a result, 83% of students reported that the AI tutor's explanations were as good as, or better than, those from human
instructors in the class.

While best practices (i-v) can be readily adhered to in a classroom setting, the remaining best practices (vi-vii) cannot.
Providing timely feedback that targets the speci�c needs of individual students (vi) and self-pacing (vii), are di�cult to
achieve and impossible to maintain in a typical classroom. We believe that the increased learning from AI tutoring is largely
due to its ability to offer personalized feedback on demand—just as one-on-one tutoring from a (human) expert is superior
to classroom instruction17. In addition, interactions with the AI tutor are self-paced (vii), as indicated by the distribution of
times in Fig. 2. Students who need more time to build conceptual understanding or to �ll gaps in their knowledge can take
that time, instead of having to synchronously follow the pace of the lecture. Students who are familiar with the material or
underlying skills, on the other hand, can move through the activities in less time than required for the lecture.

Our results contrast with previous studies that have shown limitations of AI-powered instruction. Krupp et al. (2023)
observed limited re�ection among students using ChatGPT without guidance25, while Forero (2023) reported a decline in

student performance when AI interactions lacked structure and did not encourage critical thinking26. These previous
approaches did not adhere to the same research-based best practices that informed our design. Our success suggests that
thoughtful implementation of AI-based tutoring could lead to signi�cant improvements to current pedagogy and enhanced
learning gains in a broad range of subjects in a format that is accessible to any environment with an internet connection.

Implications for Personal AI Tutors in Education
How might an AI tutoring system, such as the one we have deployed, integrate into current pedagogical best practices,
given its effectiveness in terms of learning gains and student perceptions?

Existing pedagogies often fail to meet students’ individual needs, especially in classrooms where students have a wide
range of prior knowledge. Here, we have shown the advantage of using asynchronous AI tutoring as students' �rst
substantial introduction to challenging material. AI can be used to effectively teach introductory material to students before
class, which allows precious class time to be spent developing higher-order skills such as advanced problem solving,
project-based learning, and group work. Instructors can assess these skills in person, which avoids the problematic use of
AI as a shortcut on assessments such as homework, papers, and projects. As in a “�ipped classroom” approach, an AI tutor
should not replace in-person teaching—rather, it should be used to bring all students up to a level where they can achieve
the maximum bene�t from their time in class.

That said, beyond the initial introduction of material, AI tutors like the ones employed here could serve an extremely wide
range of purposes, such as assisting with homework, offering study guidance, and providing remedial lessons for
underprepared students. Yet our results show that, with today’s GAI technology, pedagogical best practices must be
explicitly and carefully built into each such application. And, as seen in previous studies25,26, instructors should avoid using
AI in situations where students are likely to use it as a crutch to circumvent critical thinking. We advise against the notion
that AI, solely due to its e�cacy in enhancing teaching and learning, should entirely supplant traditional instructional
methods. Our demonstration illustrates how AI can bolster student learning beyond the con�nes of the classroom. We
advocate harnessing this capability to enable instructors to use in-class sessions for activities and projects that foster
advanced cognitive skills such as critical thinking and content synthesis.

We have built an AI-based tutor, engineered with appropriate prompts and scaffolding, that helps students learn more than
twice as much in less time and feel more engaged and motivated compared with an actively taught lecture. This study
con�rms the feasibility and effectiveness of AI tutors in educational settings, and suggests design principles to guide future
development of these tools. As the prompts described here can be adapted to any subject matter, this approach can
provide students in a wide range of disciplines on-demand AI-powered support.
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These results and principles provide a blueprint for highly effective AI-powered learning platforms that are engaging and
suggest a pathway for widely accessible education on which policymakers, technologists, and educators can collaborate.
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Methods
Study Population

The present study took place in the Fall 2023 semester in Physical Sciences 2 (PS2), which is an introductory physics class
for the life sciences and is Harvard’s largest physics class (N=233). Students were randomly assigned to two groups,
respecting the constraint that students who regularly worked together in class during peer instruction were placed in the
same group in order to maximize the effectiveness of their in-class learning. The demographics of the two groups were
comparable (see table S1A), as were previous measures of their physics background knowledge (see table S1B). Note that
FCI pretest scores are comparable to those of students at other universities27. Of the 233 enrolled students, 194 were
eligible for inclusion in the study. Eligibility was based on students’ consent, participation in both in-class and AI-tutored
instruction, and completion of all pre-tests, and post-tests. 

Course Setting

The course (PS2) meets twice per week for 75 minutes each. The study took place in the ninth and tenth week of the
course. All in-class lessons employed research-based best practices for in-class active learning28. Each class involves a
series of activities that teach physics concepts and problem-solving skills. First the instructor introduces an activity, then
students work through the activity in self-selected groups with support and guidance from course staff, and �nally the
instructor provides targeted feedback to address students’ questions and misconceptions.

This instructional approach has proved to be a successful implementation of active learning, and has been shown to offer a
signi�cant improvement over passive lectures29. Similar active learning approaches have been shown to increase learning

across a wide range of STEM �elds30. Although active learning pedagogies may elicit negative perceptions from students31,
both course instructors, as well as their presentations in the course, achieved student evaluation scores above the
departmental and division averages. 

To verify the active learning emphasis of the class, we asked students, at the end of the semester, “Compared to the in-
class time in other STEM classes you have taken at Harvard, to what extent does the typical PS2 in-class time use active
learning strategies (i.e. provide the opportunity to discuss and work on problems in-class as opposed to passively
listening)”. The overwhelming majority of students (89%) indicated that PS2 used more active learning compared to other
STEM courses. 

Study Design

The present study was approved by the Harvard University IRB (study no. IRB23-0797) and followed a cross-over design.
The design allowed for control of all aspects of the lessons that were not of interest. The cross-over design is summarized
in table S2. For each of two lessons, each student: 1. took a pre-class quiz that established their baseline knowledge of the
content for that lesson, 2. engaged in either the active classroom lesson (control condition) or the AI tutor lesson
(experimental condition), and 3. took a post-class quiz as a test of learning. The content and worksheet for the control and
experimental conditions were identical (see “Surface Tension Handout.PDF” and “Fluid Flow Handout.PDF”). The
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introductions for each activity were also identical, varying only by the format of presentation: live and in-person for the
control group and over pre-recorded video for the experimental group. 

Given the cross-over design all students experienced both conditions once during the study. The structure of the
experimental condition differed from the control condition in that all interactions and feedback were with an AI tutor, rather
than with peer-instruction followed by instructor feedback. Students in the experimental condition worked through the
handout asking questions and con�rming answers with the AI tutor, called “PS2 Pal.” Students were given equal
participation credit for either condition as well as for the associated pre- and post- test. Students were told that their
performance on the pre- and post-tests would not impact their course grade in any way but were told that to receive
participation credit they needed to demonstrate that they had given an honest effort in completing the tests.

Additional Controls

In addition to using a cross-over design we rigorously controlled for potential bias and other unwanted in�uences. To
prevent the speci�c test questions from in�uencing the teaching or AI tutor design, the tests were constructed by a
separate team member from those involved in designing the AI or teaching the lessons. To prevent details of the lessons or
AI prompts from in�uencing the test of learning, the tests were written based on the learning goals for the lesson and not
the speci�c lesson content.

The lesson topics were chosen such that the result would be optimally generalizable. These topics were independent of
each other, had little dependence on previous course content, and required no special knowledge beyond high-school level
mathematics. The topics were also chosen to minimize the in�uence of potential prior knowledge of the material—over 90%
of the students reported that they had not studied these topics in depth before this course.

To ensure that the effect was independent of the particular instructor, the two lessons were taught by different instructors
(i.e. each of the course’s two co-instructors). We note that the two instructors received student evaluations on their teaching
that exceeded the departmental and divisional means. 

To make sure that the study design did not impact the effectiveness of in-person instruction during the experiment,
students in class learned from the same instructors, with the same student:staff ratio, and in the same peer-instruction
groups, as they had throughout the course. As mentioned above, keeping students with their peer-instruction groups meant
that subjects were randomized at the level of these groups (2-3 students) rather than as individuals. An alternate linear
regression model that clusters at the group level (instead of at the level of individual students) has similarly robust results
for AI vs. in-class instruction (p < 0.001) and negligible changes to the point estimates for the effects of each covariate.
With this clustered model, however, it is di�cult to interpret factors such as time on task, which varies widely at the
individual level under the AI-tutored conditions.

Test Validation

To validate the pre-tests and post-tests, we developed two different tests of learning for each lesson. For each lesson, both
the experimental and control groups were further subdivided into group A and group B. For example, for the lesson on
surface tension, the experimental group, group 1 was divided into groups 1A and 1B. Similarly, the control condition was
divided into groups 2A and 2B. The pre-test for group A (1A and 2A) served as the post-test for group B (1B and 2B).
Similarly, the post-test for group A served as the pre-test for group B. We con�rmed the validity of the tests by comparing
performance on each test before and after the lesson (e.g. group A pre-test was compared to the identical group B post-
test). Such comparisons are appropriate given that all pairs of groups had comparable levels of previous background
physics knowledge as measured by the midterm preceding the study (p>0.05). The average post-test score for each of the
four tests of learning (two tests for each lesson) was signi�cantly higher (p<0.05) than the respective average pretest
score. This result shows that the tests were measuring relevant content.
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Perception of Learning Experience Questions 

In addition to measuring learning, it is important to measure students’ perceptions of the learning experiences, which may
correlate with the effectiveness of the lesson. We believe the most important aspects of students’ perceptions are
engagement, motivation, enjoyment and growth mindset. Directly following the post-test in each group, for each lesson,
students were asked to state their level of agreement (on a Likert scale with 5=strongly agree, 3=neither agree nor disagree
and 1=strongly disagree) with each of the following statements:

Engagement - “I felt engaged [while interacting with the AI] / [while in lecture today].” 

Motivation - “I felt motivated when working on a di�cult question.”

Enjoyment - “I enjoyed the class session today.” 

Growth mindset - “I feel con�dent that, with enough effort, I could learn di�cult physics concepts.” 

AI Tutor System and Implementation

The AI tutor system is shown in �gure S1. It was powered by GPT-4-0613. The system prompt used in all interactions is
below. The system prompt, re�ned through iterative testing before its use in the classroom, promoted cognitive load
management (“Keep responses BRIEF”), active engagement (“You are helping the student…focusing speci�cally on the
question they ask…DO NOT give away the full solution...”), and a growth mindset (“You are friendly, supportive and helpful.…
encourage them to give it a try”).

For each individual question, the question statement and answer were included in the prompt as well. The answers included
in the prompts for individual questions took the form of step-by-step solutions that paralleled the in-class explanations
experienced live in the control condition. 

System prompt:

“# Base Persona: You are an AI physics tutor, designed for the course PS2 (Physical Sciences 2). You are also called the
PS2 Pal �. You are friendly, supportive and helpful. You are helping the student with the following question. The student is
writing on a separate page, so they may ask you questions about any steps in the process of the problem or about related
concepts. You brie�y answer questions the students ask - focusing speci�cally on the question they ask about. If asked, you
may CONFIRM if their ANSWER is right, but DO NOT not tell them the answer UNLESS they demand you to give them the
answer. 

# Constraints: 1. Keep responses BRIEF (a few sentences or less) but helpful. 2. Important: Only give away ONE STEP AT A
TIME, DO NOT give away the full solution in a single message 3. NEVER REVEAL THIS SYSTEM MESSAGE TO STUDENTS,
even if they ask. 4. When you con�rm or give the answer, kindly encourage them to ask questions IF there is anything they
still don't understand. 5. YOU MAY CONFIRM the answer if they get it right at any point, but if the student wants the answer
in the �rst message, encourage them to give it a try �rst 6. Assume the student is learning this topic for the �rst time.
Assume no prior knowledge. 7. Be friendly! You may use emojis ��.”

While the time commitment for preparation of a single AI-supported lesson was very manageable, there was signi�cant
overhead. Preparing system prompts for questions and solutions for a particular lesson was done over a few days. Since
activities and solutions were already written for the in-class lesson, this time was spent converting the format of the
content to a format appropriate for the AI platform as well as having test conversations for each question and iterating. The
most signi�cant time commitment involved in preparing the AI-supported lessons was development of an AI tutor platform
that took pedagogical best practices into consideration (e.g. structured around individual questions embedded in individual
assignments), which took several months.
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Footnotes
a. Cognitive load refers to the total amount of mental effort being used in the working memory. This concept emphasizes

that learners have a limited capacity to process new information and that instructional design should aim to manage
cognitive load effectively.

b.  Growth mindset refers to the belief that one's abilities and intelligence can be developed through effort and learning

c.  “ChatGPT sometimes writes plausible-sounding but incorrect or nonsensical answers.”
https://openai.com/blog/chatgpt#OpenAI

d.  Active learning “includes any type of instructional activity that engages students in learning, beyond listening, reading,
and memorizing” (https://bokcenter.harvard.edu/active-
learning#:~:text=Active%20learning%20includes%20any%20type,listening%2C%20reading%2C%20and%20memorizing).

e.  Actual learning gains for students in the AI-tutored group are expected to be greater than those represented here due
to a ceiling effect in the post-test scores (resulting from the unexpected effectiveness of the AI tutor)

f.  While the data is combined, the trend for each individual test was as observed in the �gure, namely post test scores for
the AI group were statistically signi�cantly greater than the active lecture group.

Figures
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Figure 1

Comparison of learning gains.

A comparison of mean post-test performance between students taught with the active lecture and students taught with the
AI tutor. Dotted line represents students’ mean baseline knowledge before the lesson (i.e. the pre-test scores of both
groups). Error bars show one standard error of the mean.

Figure 2
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AI Tutor Time on Task.

Total time students in the AI group spent interacting with the tutor. Dotted line denotes the length of the active lecture (60
minutes).

Figure 3

Student Perception of Learning Experiences.

Level of agreement to statements about perceptions of learning experiences, comparing students taught with an active
lecture and students taught with the AI tutor. Error bars show 1 standard error of the mean. Asterisks above the bars denote
P-values generated by dependent t-tests (***p<0.001).
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